M. Xanthos, Functional fillers for plastics, Wiley-VCH Verlag GmbH & Co. KGaA,
Germany, 2005.
G. Prichard, Quick reference guide, Chapman and Hall, New York, 1998. 10- J. Stepek, and J. Daoust, Additives for plastics, Springer-Verlag, New York, 1983. 11- Radian Corp. Chemical additives for the plastics industry: properties, applications and toxicologies, Noyes Data Corp., Park Ridge, 55-59,1987.
12- J.H. Clint, Surfactants: applications in plastics, Champan and Hall, New York, 1998.
Refrences
1- M. Sumita, Y. Tsukumo, K. Miyasaka, and K. Ishikawa, Tensile yield stress of polypropylene composites filled with ultrafine particles, J.Mater. Sci., 18:1758-1764, 1983. 2- P.B. Messersmith, and E.P. Giannelis, Synthesis and characterization of layered silicate-epoxy nanocomposites, Chem. Mater., 6:1719-1725, 1994.
3- S. Ijima, Helical microtubules of graphitic carbon, Nature, 354:56-58, 1991. 4- L.S. Schadler, Polymer-based and polymerfilled nanocomposites, Wiley-VCH Verlag/gmbH & Co. KgaA, Weinheim,
Germany, 2003.
5- A.P. Kumar, D. Depan, N.S. Tomer, and R.P. Singh, Nanoscale particles for polymer degradation and stabilization-trends and future perspectives, Progress in Polymer Sci., 34:479-515,2009.
nanocomposites, Macromolecules, 40:40594067, 2007.
L. Nielsen, and R. Landel, Mechanical properties of polymer and composites, Marcel Decker, New York, 1994.
M. Zhang, H. Zeng, L. Zhang, G. Lin, R.K.Y. Li, Fracture characteristics of discontinuous carbon fiber-reinforced PPS and PES-C composites, Polym. Compos., 1:357, 1993.
C.L. Wu, M.Q. Zhang, M.Z. Rong, and K. Friedrich, Tensile performance improvement of low nanoparticles filled polypropylene composites, Compos. Sci. Technol., 62:1327, 2002.
B. Wetzel, F. Haupert, and M.Q. Zhang, Epoxy nanocomposites with high mechanical and tribological performance, Compos. Sci. Technol., 63:2055, 2003.
Scott Bader Co. Crystic VE671 (AD)-F: epoxy vinyl ester resin, Scott Bader Middle East Limited, 2009.
Degussa Co. Aeroxide TiO2 P 25: hydrophilic fumed titanium dioxide, Germany. 30- Bittmann, B., Haupert, F., Schlarb, A.K. Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship, Ultrasonics
Sonochemistry, 18:120-126, 2011.
31- B. Pukansky, J. Kolarik, F. Lednicky, Polymer composites: proceedings of the 28th microsymposium on macromolecules, Prague, Gzechoslovakia, 67:553, 1985. 32- Z. Guo, X. Liang, T. Pereira, R. Scaffaro, and H.T. Hahn, CuO nanoparticle filled vinylester resin nanocomposites: fabrication, characterization and property analysis, Composites Science and Technology, 67:20362044, 2007.
33- X. Zhang, and L.C. Simon, In situ polymerization of hybrid polyethylene-alumina nanocomposites, Macromol Mater Eng., 290:573-583, 2005.

R.G. Raj, B.V. Kokta, D. Maldas, and C. Daneault, Use of wood fibers in thermoplastic composites, Polymer Comp., 9(6):404-411, 1988.
D. Maldas, B.V. Kokta, and C. Daneault, Influence of coupling agents and treatments on the mechanical properties of cellulose fiberpolystyrene composites, J.Appl. Polym. Sci., 37:751-775, 1989.
Q. Wang, H. Xia, and C. Zhang,
Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation, J.Appl. Polym. Sci., 80:1478, 2001.
S.S. Park, N. Bernet, S.D.L. Roche, and H.T. Hahn, Processing of iron oxide-epoxy vinyl ester nanocomposites, J.Compos. Mater., 37:465, 2003.
J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A.H. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting elecetrical properties, Polymer, 40:5967-5971, 1999.
T.J. Mason, and J.P. Lorimer, Applied sonochemistry, Wiley-VCH, Weinheim, Germany, 2002.
K.S. Suslick, and G.L. Price, Application of ultrasound to materials chemistry, Annual Reviews Materials Sci, 29:295-326, 1999.
B. Bittmann, F. Haupert, A.K. Schlarb, Ultrasonic dispertion of inorganic nanoparticles in epoxy resin, Ultrasonics Sonochemistry, 16:622-628, 2009.
T.D. Fornes, and D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer, 44:49935013, 2003.
K.Y. Lee, and D.R. Paul. A model for composites containing three-dimensional ellipsoidal inclusions, Polymer, 46:9064-9080, 2005.
S. Sen, J.D. Thomin, S.K. Kumar, and P. Keblinski, Molecular underpinnings of the mechanical reinforcement in polymer
پيوست ها

جدول 1- ويژگي رزين وينيل استر مورد استفاده در اين پژوهش.

ويژگـي ها واحد رزين مايع
ارزش اسيدmgKOH/g حداكثر 15
محتواي بخارشدني %50 ±450
دانسيته در 20 درجه سانتيگرادg/ml 06/1- 04/1 زمان مجاز نگهداري (حداكثر 25 درجه، در تاريكي) ماه 6

جدول 2- مشخصه هاي مربوط به پودر مورد استفاده در اين پژوهش.

ويژگـي ها واحد رزين مايع
مساحت سطح ويژهm2/g 15 ±50

شكل 1- اثر فرآيند توليد بر منحني هاي تنش- كرنش آزمون كشش نمونه هاي وينيل استر خالص و كامپوزيت وينيل استر/
.TiO2 نانو 1 %wt
191263-23339480
500
1000
1500
2000
2500
3000
3500
4000
Neat vinyl ester
Pre-Tr. Type I, 10
min Ultra.
Pre-Tr. Type II, 10
min Ultra.
Pre-Tr. Type II, 20
min Ultra.
Young’s Modulus (MPa)

شكل
2

ي

مدول

بر

توليد

فرآيند

اثر

نمونه

انگ

وينيل

هاي

وينيل

كامپوزيت

و

خالص

استر

استر
/
wt
%

1

نانو
TiO
.

0
10
20
30
40
50
60
70
80
90
Neat vinyl ester
Pre-Tr. Type I, 10
min Ultra.
Pre-Tr. Type II, 10
min Ultra.
Pre-Tr. Type II, 20
min Ultra.
Tensile Strength (MPa)

0

در این سایت فقط تکه هایی از این مطلب با شماره بندی انتهای صفحه درج می شود که ممکن است هنگام انتقال از فایل ورد به داخل سایت کلمات به هم بریزد یا شکل ها درج نشود

شما می توانید تکه های دیگری از این مطلب را با جستجو در همین سایت بخوانید

ولی برای دانلود فایل اصلی با فرمت ورد حاوی تمامی قسمت ها با منابع کامل

اینجا کلیک کنید

500

1000


دیدگاهتان را بنویسید